Home » , » KARBOHIDRAT

KARBOHIDRAT



A. Pengertian Karbohidrat
Secara biokimia, karbohidrat adalah polihidroksil-aldehida atau polihidroksil-keton, atau senyawa yang menghasilkan senyawa-senyawa ini bila dihidrolisis. Karbohidrat mengandung gugus fungsi karbonil (sebagai aldehida atau keton) dan banyak gugus hidroksil. Pada awalnya, istilah karbohidrat digunakan untuk golongan senyawa yang mempunyai rumus (CH2O)n, yaitu senyawa-senyawa yang n atom karbonnya tampak terhidrasi oleh n molekul air. Namun demikian, terdapat pula karbohidrat yang tidak memiliki rumus demikian dan ada pula yang mengandung nitrogenfosforus, atau sulfur.
Karbohidrat berasal dari pengertian atom karbon yang terhidrasi dengan rumus (CH2O)n. Tetapi pengertian ini sebenarnya sudah tidak tepat lagi karena banyak senyawa karbohidrat yang tidak mengandung atom hidrogen dan oksigen dengan perbandingan 2 : 1, misalnya gula deoksiribosa yang mempunyai rumus C5H10O4. Disamping itu banyak pula karbohidrat yang mengandung atom lain seperti nitrogen, sulfur, dan lain-lain yang menunjukkan tidak sesuainya dengan rumus karbohidrat tersebut. Walaupun demikian, nama karbohidrat ini sampai sekarang masih terus dipergunakan ( Aisjah Girindra, 1993).
B. Penggolongan Karbohidrat
Karbohidrat dapat digolongan menjadi dua (2) macam yaitu karbohidrat sederhana dengan karbohidrat komplek atau dapat pula menjadi tiga (3) macam, yaitu :
a. Monosakarida (karbohidrat tunggal)
Kelompok monosakarida dibedakan menjadi dua (2) macam, yaitu pentosa yang tersusun dari lima (5) atom karbon (arabinosa, ribose, xylosa) dan heksosa yang tersusun dari enam (6) atom karbon (fruktosa/levulosa, glukosa, dan galaktosa).
Sebagian besar monosakarida dikenal sebagai heksosa, karena terdiri atas 6-rantai atau cincin karbon. Atom-atom hidrogen dan oksigen terikat pada rantai atau cincin ini secara terpisah atau sebagai gugus hidroksil (OH). Ada tiga jenis heksosa yang penting dalam ilmu gizi, yaitu glukosa, fruktosa, dan galaktosa. Ketiga macam monosakarida ini mengandung jenis dan jumlah atom yang sama, yaitu 6 atom karbon, 12 atom hidrogen, dan 6 atom oksigen. Perbedaannya hanya terletak pada cara penyusunan atom-atom hidrogen dan oksigen di sekitar atom-atom karbon. Perbedaan dalam susunan atom inilah yang menyebabkan perbedaan dalam tingkat kemanisan, daya larut, dan sifat lain ketiga monosakarida tersebut. Monosakarida yang terdapat di alam pada umumnya terdapat dalam bentuk isomer dekstro (D). gugus hidroksil ada karbon nomor 2 terletak di sebelah kanan. Struktur kimianya dapat berupa struktur terbuka atau struktur cincin. Jenis heksosa lain yang kurang penting dalam ilmu gizi adalah manosa. Monosakarida yang mempunyai lima atom karbon disebut pentosa, seperti ribosa dan arabinosa
1. Glukosa, dinamakan juga dekstrosa atau gula anggur, terdapat luas di alam dalam jumlah sedikit, yaitu di dalam sayur, buah, sirup jagung, sari pohon, dan bersamaan dengan fruktosa dalam madu. Glukosa memegang peranan sangat penting dalam ilmu gizi. Glukosa merupakan hasil akhir pencernaan pati, sukrosa, maltosa, dan laktosa pada hewan dan manusia. Dalam proses metabolisme, glukosa merupakan bentuk karbohidrat yang beredar di dalam tubuh dan di dalam sel merupakan sumber energi.
2. Fruktosa, dinamakan juga levulosa atau gula buah, adalah gula paling manis. Fruktosa mempunyai rumus kimia yang sama dengan glukosa, C6H12O6, namun strukturnya berbeda. Susunan atom dalam fruktosda merangsang jonjot kecapan pada lidah sehingga menimbulkan rasa manis.
3. Galaktosa, tidak terdapat bebas di alam seperti halnya glukosa dan fruktosa, akan tetapi terdapat dalam tubuh sebagai hasil pencernaan laktosa.
4. Manosa, jarang terdapat di dalam makanan. Di gurun pasir, seperti di Israel terdapat di dalam manna yang mereka olah untuk membuat roti.
5. Pentosa, merupakan bagian sel-sel semua bahan makanan alami. Jumlahnya sangat kecil, sehingga tidak penting sebagai sumber energi.
Struktur glukosa dan fruktosa digunakan sebagai dasar untuk membedakan antara gula reduksi dan gula non-reduksi. Penamaan gula reduksi ialah didasarkan pada adanya gugus aldehid (–CHO pada glukosa dan galaktosa) yang dapat mereduksi larutan Cu2SO4 membentuk endapan merah bata. Adapun gula non-reduksi ialah gula yang tidak dapat mereduksi akibat tidak adanya gugus aldehid seperti pada fruktosa dan sukrosa/dektrosa yang memiliki gugus keton (C=O).
D-Glukosa (Fischer) D-Glukosa (Haworth)
Stereoisomer Monosakarida. Seperti diketahui bentuk stereoisomer itu ada 2 macam, yaitu isomer optic dan isomer geometri. Isomer geometri dikenal dengan bentuk cis-trans, contohnya asam fumarat dan maleat, sedangkan isomer yang biasanya terdapat pada karbohidrat berupa isomer optic. Molekul monosakarida mempunyai atom karbon asimetris, yaitu atom karbon yang mengikat gugus berlainan pada tiap ikatan kovalennya, sehingga dapat membentuk 2 senyawa yang merupakan bayangan cermin bagi yang lain, contohnya D-glukosa dan L-glukosa
Dua senyawa yang merupakan pasangan bayangan cermin seperti ini disebut pasangan enansiomer dan mempunyai sifat yang hamper sama, di antaranya titik didih, titik beku, dan daya larut dalam berbagai zat pelarut. Senyawa monosakarida dapat memutar bidang polarisasi ke kanan searah putaran jarum jam (dekstrorotari atau +) dan memutar bidang polarisasi ke kiri (levarorotari atau -). Semua monosakarida mempunyai aktivitas optic tetapi tidak semua senyawa yang mempunyai atom karbon asimetris beraktivitas optic. Sebuah molekul bias saja mempunyai aktivitas optic walaupun tidak mempunyai atom karbon asimetris. 

b. Oligosakarida (tersusun dari beberapa monosakarida)
Kelompok ini terdiri dari banyak jenis, seperti disakarida, trisakarida, tetrasakarida, dll. Namun paling banyak dipelajari ialah kelompok disakarida yang terdiri dari maltosa, laktosa dan sukrosa (dekstrosa). Dua dari jenis disakarida ini termasuk gula reduksi (laktosa dan maltosa) sedangkan sukrosa tidak termasuk gula reduksi (nonreducing).
Ada empat jenis disakarida, yaitu sukrosa atau sakarosa, maltosa, laktosa, dan trehaltosa. Trehaltosa tidak begitu penting dalam milmu gizi, oleh karena itu akan dibahas secara terbatas. Disakarida terdiri atas dua unit monosakarida yang terikat satu sama lain melalui reaksi kondensasi. kedua monosakarida saling mengikat berupa ikatan glikosidik melalui satu atom oksigen (O). ikatan glikosidik ini biasanya terjadi antara atom C nomor 1 dengan atom C nomor 4 dan membentuk ikatan alfa, dengan melepaskan satu molekul air. hanya karbohidrat yang unit monosakaridanya terikat dalam bentuk alfa yang dapat dicernakan. Disakarida dapat dipecah kembali mejadi dua molekul monosakarida melalui reaksi hidrolisis. Glukosa terdapat pada ke empat jenis disakarida; monosakarida lainnya adalah fruktosa dan galaktosa.
Ø Sukrosa atau sakarosa dinamakan juga gula tebu atau gula bit. Secara komersial gula pasir yang 99% terdiri atas sukrosa dibuat dari keuda macam bahan makanan tersebut melalui proses penyulingan dan kristalisasi. Gula merah yang banayk digunakan di Indonesia dibuat dari tebu, kelapa atau enau melalui proses penyulingan tidak sempurna. Sukrosa juga terdapat di dalam buah, sayuran, dan madu.
Ø Maltosa (gula malt) tidak terdapat bebas di alam. Maltosa terbentuk pada setiap pemecahan pati, seperti yang terjadi pada tumbuh-tumbuhan bila benih atau bijian berkecambah dan di dalam usus manusia pada pencernaan pati.
Ø Laktosa (gula susu) hanya terdapat dalam susu dan terdiri atas satu unit glukosa dan satu unit galaktosa. Kekurangan laktase ini menyebabkan ketidaktahanan terhadap laktosa. Laktosa yang tidak dicerna tidak dapat diserap dan tetap tinggal dalam saluran pencernaan. Hal ini mempengaruhi jenis mikroorgnaisme yang tumbuh, yang menyebabkan gejala kembung, kejang perut, dan diare. Ketidaktahanan terhadap laktosa lebih banyak terjadi pada orang tua. Mlaktosa adalah gula yang rasanya paling tidak manis (seperenam manis glukosa) dan lebih sukar larut daripada disakarida lain.
Ø Trehalosa seperti juga maltosa, terdiri atas dua mol glukosa dan dikenal sebagai gila jamur. Sebanyak 15% bagian kering jamur terdiri atas trehalosa. Trehalosa juga terdapat dalam serangga.
Ø serealia.
Oligosakarida terdiri atas polimer dua hingga sepuluh monosakarida.
Ø Rafinosa, stakiosa, dan verbaskosa adalah oligosakarida yang terdiri atas unit-unit glukosa, fruktosa, dan galaktosa. Ketiga jenis oligosakarida ini terdapat du dalam biji tumbuh-tumbuhan dan kacang-kacangan serta tidak dapat dipecah oleh enzim-enzim perncernaan.
Ø Fruktan adalah sekelompok oligo dan polisakarida yang terdiri atas beberapa unit fruktosa yang terikat dengan satu molekul glukosa. Fruktan terdapat di dalam serealia, bawang merah, bawang putih, dan asparagus. Fruktan tidak dicernakan secara berarti. Sebagian ebsar di dalam usus besar difermentasi.
c. Polisakarida (tersusun lebih dari 10 monosakarida)
Karbohidrat kompleks ini dapat mengandung sampai tiga ribu unit gula sederhana yang tersusun dalam bentuk rantai panjang lurus atau bercabang. Jenis polisakarida yang penting dalam ilmu gizi adalah pati, dekstrin, glikogen, dan polisakarida nonpati.
Ø Pati merupakan simpanan karbohidrat dalam tumbuh-tumbuhan dan merupakan karbohidrat utama yang dimakan manusia di seluruh dunia. Pati terutama terdapat dalam padi-padian, biji-bijian, dan umbi-umbian.
umlah unit glukosa dan susunannya dalam satu jenis pati berbeda satu sama lain, bergantung jenis tanaman asalnya. Bentuk butiran pati ini berbeda satu sama lain dengan karakteristik tersendiri dalam hal daya larut, daya mengentalkan, dan rasa. Amilosa merupakan rantai panjang unit glukosa yang tidak bercabang, sedangkan amilopektin adfalah polimer yang susunannya bercabang-cabang dengan 15-30 unit glukosa pada tiap cabang.
Ø Dekstrin merupakan produk antara pada perencanaan pati atau dibentuk melalui hidrolisis parsial pati. Dekstrin merupakan sumber utama karbohidrat dalam makanan lewat pipa (tube feeding). Cairan glukosa dalam hal ini merupakan campuran dekstrin, maltosa, glukosa, dan air. Karena molekulnya lebih besar dari sukrosa dan glukosa, dekstrin mempunyai pengaruh osmolar lebih kecil sehingga tidak mudah menimbulkan diare.
Ø Glikogen dinamakan juga pati hewan karena merupakan bentuk simpanan karbohidrat di dalam tubuh manusia dan hewan, yang terutama terdapat di dalam hati dan otot. Dua pertiga bagian dari glikogen disimpan dalam otot dan selebihnya dalam hati. Glikogen dalam otot hanya dapat digunakan untuk keperluan energi di dalam otot tersebut, sedangkan glikogen dalam hati dapat digunakan sebagai sumber energi untuk keperluan semua sel tubuh. Kelebihan glukosa melampaui kemampuan menyimpannya dalam bentuk glikogen akan diubah menjadi lemak dan disimpan dalam jaringan lemak.
Ø Selulosa terdapat dalam tumbuhan sebagai bahan pembentuk dinding sel. Dalam tubu kitaselulosa tidak dapat dicernakan karena kita tidak mempunyai enzim yang dapat menguraikan selulosa. Dengan asam encer tidak dapat terhidrolisis, tetapi oleh asam dengan konsentrasi tinggi dapat terhidrolisis menjadi selobiosa dan D-glukosa. Selobiosa adalah suatu disakarida yang terdiri atas dua molekul g;ukosa yang berikatan glikosidik antara atom carbón 1 dengan atom carbón 4.
Polisakari dan Nonpati/Serat
Serat akhir-akhir ini banyak mendapat perhatian karena peranannya dalam mencegah berbagai penyakit. Ada dua golongan serat yaitu yang tidak dapat larut dan yang dapat larut dalam air. Serat yang tidak larut dalam air adalah selulosa, hemiselulosa, dan lignin. Serat yang larut dalam air adalah pektin, gum, mukilase, glukan, dan algal.
Secara umum kelompok ini terdiri dari tiga (3) jenis yaitu :
1. Homopolisakarida Yaitu polisakarida yang tersusun atas satu jenis dari monosakarida yang diikat oleh ikatan glikosida, seperti galactan, mannan, fructosans, dan glucosans (cellulose, dextrin, glycogen, dan starch/pati)
2. Heteropolisakarida
3. Polisakarida mengandung N (chitin)
Karbohidrat itu sifat kimianya berhubungan dengan sama gugus -OH, gugus aldehida dan keton.
C. Sifat-Sifat Karbohidrat
1. Sifat mereduksi
Monosakarida dan bbrp disakarida dapat mereduksi terutama dalam suasana basa. Sifat ini karena adanya gugus aldehida atau benda keton dalam karbohidrat. Sifat mereduksi keliatan pada reaski reduksi ion logam seperti ion Cu2+ dan ion Ag+ pada pereaksi tertentu :
a. Pereaksi Fehling
b. Pereaksi Benedict
c. Pereaksi Barfoed


. Pembentukan Furfural
Dalam larutan asam encer, walaupun dipanaskan, monosakarida umumnya stabil. Namun pada asam kuat yang pekat, monosakarida menghasilkan furfural atau derivatnya. Reaksi pembentukan furfural ini adalah reaksi dehidrasi/pelepasan molukel air dari suatu senyawa. Pentosa hampir secara kuantitatif semuanya terdehidrasi menjadi furfural. Heksosa menghasilkan hidroksimetilfurfural. Karena furfural dan derivatnya ini membentuk senyawa berwarna, reaksi ini bisa dipake buat uji karbohidrat. Contohnya pereaksi Molisch.

3. Pembentukan Osazon
Setiap karbohidrat yang memiliki gugus aldehida atau keton bebas akan membentuk osazon saat dipanaskan bersama fenilhidarzin berlebih. Osazon yg dihasilkan ini memiliki bentuk kristal dan titik lebur yang berbeda bagi setiap karbohidrat, makanya bisa dipake juga buat identifikasi karbohidrat dan ngebedain monosakarida, contohnya memisahkan antara glukosa dan galaktosa pada urine wanita yang sedang menyusui.

4. Pembentukan Ester
Gugus hidroksil pada karbohidrat dapat menghasilkan ester saat karbohidrat direaksikan dengan asam. Monosakarida memiliki beberapa gugus -OH dan dgn asam fosfat dapat menghasilkan ester asam fosfat. Ester yang biasanya dianggap penting adalah alpha-D-glukosa-6-fosfat dan alpha-D-fruktosa-1,6-difosfat. Penting karena kedua ester ini terjadi dari reaksi monosakarida dan ATP + enzim2 di dalam tubuh.

5. Isomerasi
Monosakarida dalam larutan basa encer tidak stabil; apabila glukosa dilarutkan sebagian akan berubah menjadi fruktosa dan manosa. Ketiganya ada dalam keadaan setimbang. Hal yang sama terjadi saat yang dilarutkan adalah fruktosa atau manosa, pada akhirnya akan tercapai kesetimbangan antara ketiga monosakarida tsb. Reaksi ini dikenal sebagai transformasi Lobry de Bruin.

6. Pembentukan Glikosida
Glukosa yang bereaksi dengan metilalkohol akan menghasilkan dua senyawa, keduanya dapat dipisahkan satu dgn yang lainnya dan keduanya tdk memiliki gugus alhedia. Hal ini membuktikan yang menjadi pusat reaksi adalah guguh -OH yg terikat pada atom C no 1. Senyawa yg terbentuk adalah asetal, umunya disebutnya glikosida. Ikatan yg terjadi antara gugus metil dgn monosakarida diesbut ikatan glikosidan dan gugus -OH yg bereaksi disebut gugus -OH glikosidik. Sedangkan dua senyawa yang dihasilkan adalah metil-alpha-D-glukosida atau metil-alpha-D-glukopiranosida dan metil-beta-D-glukosida atau metil-beta-D-glukopiranosida
Pengujian Karbohidrat
a. Uji Kualitatif
Pengujian ini dapat dilakukan dengan dua (2) macam cara, yaitu; pertama menggunakan reaksi pembentukan warna dan yang kedua menggunakan prinsip kromatografi (TLC/Thin Layer Cromatograpgy, GC/Gas Cromatography, HPLC/High Performance Liquid Cromatography). Dikarenakan efisiensi pengujian, pada umumnya untuk pengujian secara kualitatif hanya digunakan prinsip yang pertama yaitu adanya pembentukan warna sebagai dasar penentuan kandungan karbohidrat dalam suatu bahan. Sedikitnya ada tujuh (7) macam reaksi pembentukan warna, yaitu :
1. Reaksi Molisch
KH (pentose) + H2SO4 pekat furfural + a naftol warna ungu
KH (heksosa) + H2SO4 pekat HM-furfural + a naftol warna ungu
Kedua macam reaksi diatas berlaku umum, baik untuk aldosa (-CHO) maupun karbohidrat kelompok ketosa (C=O).
2. Reaksi Benedict
KH + camp CuSO4, Na-Sitrat, Na2CO3 Cu2O endapan merah bata
3. Reaksi Barfoed
KH + camp CuSO4 dan CH3COOH Cu2O endapan merah bata
4. Reaksi Fehling
KH + camp CuSO4, K-Na-tatrat, NaOH Cu2O endapan merah bata
Ketiga reaksi diatas memiliki prinsip yang hampir sama, yaitu menggunakan gugus aldehid pada gula untuk mereduksi senyawa Cu2SO4 menjadi Cu2O (enpadan berwarna merah bata) setelah dipanaskan pada suasana basa (Benedict dan Fehling) atau asam (Barfoed) dengan ditambahkan agen pengikat (chelating agent) seperti Na-sitrat dan K-Na-tatrat.
5. Reaksi Iodium
KH (poilisakarida) + Iod (I2) à warna spesifik (biru kehitaman)
6. Reaksi Seliwanoff
KH (ketosa) + H2SO4 à furfural à + resorsinol à warna merah.
KH (aldosa) + H2SO4 à furfural à + resorsinol à negatif
7. Reaksi Osazon
Reaksi ini dapat digunakan baik untuk larutan aldosa maupun ketosa, yaitu dengan menambahkan larutan fenilhidrazin, lalu dipanaskan hingga terbentuk kristal berwarna kuning yang dinamakan hidrazon (osazon).
b. Uji Kuantitatif
Untuk penetapan kadar karbohidrat dapat dilakukan dengan metode fisika, kimia, enzimatik, dan kromatografi (tidak dibahas).
1. Metode Fisika
Ada dua (2) macam, yaitu :
a. Berdasarkan indeks bias
Cara ini menggunakan alat yang dinamakan refraktometer, yaitu dengan rumus :
X = [(A+B)C - BD)]
4
dimana :
X = % sukrosa atau gula yang diperoleh
A = berat larutan sampel (g)
B = berat larutan pengencer (g)
C = % sukrosa dalam camp A dan B dalam tabel
D = % sukrosa dalam pengencer B
b. Berdasarkan rotasi optis
Cara ini digunakan berdasarkan sifat optis dari gula yang memiliki struktur asimetrs (dapat memutar bidang polarisasi) sehingga dapat diukur menggunakan alat yang dinamakan polarimeter atau polarimeter digital (dapat diketahui hasilnya langsung) yang dinamakan sakarimeter.
Menurut hokum Biot; “besarnya rotasi optis tiap individu gula sebanding dengan konsentrasi larutan dan tebal cairan” sehingga dapat dihitung menggunakan rumus :
[a] D20 = 100 A
L x C
dimana :
[a] D20 = rotasi jenis pada suhu 20 oC menggunakan
D = sinar kuning pada panjang gelombang 589 nm dari lampu Na
A = sudut putar yang diamati
C = kadar (dalam g/100 ml)
L = panjang tabung (dm)
sehingga C = 100 A
L x [a] D20
2. Metode Kimia
Metode ini didasarkan pada sifat mereduksi gula, seperti glukosa, galaktosa, dan fruktosa (kecuali sukrosa karena tidak memiliki gugus aldehid). Fruktosa meskipun tidak memiliki gugus aldehid, namun memiliki gugus alfa hidroksi keton, sehingga tetap dapat bereaksi.
Dalam metode kimia ini ada dua (2) macam cara yaitu :a. Titrasi, b. Spektrofotometri

3. Metode Enzimatik
Untuk metode enzimatis ini, sangat tepat digunakan untuk penentuan kagar suatu gula secara individual, disebabkan kerja enzim yang sangat spesifik. Contoh enzim yang dapat digunakan ialah glukosa oksidase dan heksokinase Keduanya digunakan untuk mengukur kadar glukosa.
a. Glukosa oksidase
D- Glukosa + O2 oleh glukosa oksidase à Asam glukonat dan H2O2
H2O2 + O-disianidin oleh enzim peroksidase à 2H2O + O-disianidin teroksdasi yang berwarna cokelat (dapat diukur pada l 540 nm)
b. Heksokinase
D-Glukosa + ATP oleh heksokinase à Glukosa-6-Phospat +ADP
Glukosa-6-Phospat + NADP+ oleh glukosa-6-phospat dehidrogenase à Glukonat-6-Phospat + NADPH + HAdanya NADPH yang dapat berpendar (memiliki gugus kromofor) dapat diukur pada l 334 nm dimana jumlah NADPH yang terbentuk setara dengan jumlah glukosa.
D. Peran Karbohidrat
1. Sumber Energi
Fungsi utama karbohidrat adalah menyediakan energi bagi tubuh. Karbohidrat merupakan sumber utama energi bagi penduduk di seluruh dunia, karena banyakdi dapat di alam dan harganya relatif murah. Satu gram karbohidrat menghasilkan 4 kkalori. Sebagian karbohidrat di dalam tubuh berada dalam sirkulasi darah sebagai glukosa untuk keperluan energi segera; sebagian disimpan sebagai glikogen dalam hati dan jaringan otot, dan sebagian diubah menjadi lemak untuk kemudian disimpan sebagai cadangan energi di dalam jaringan lemak. Seseorang yang memakan karbohidrat dalam jumlah berlebihan akan menjadi gemuk.
2. Peran dalam biosfer
Fotosintesis menyediakan makanan bagi hampir seluruh kehidupan di bumi, baik secara langsung atau tidak langsung. Organisme autotrof seperti tumbuhan hijau, bakteri, dan alga fotosintetik memanfaatkan hasil fotosintesis secara langsung. Sementara itu, hampir semua organisme heterotrof, termasuk manusia, benar-benar bergantung pada organisme autotrof untuk mendapatkan makanan.
Pada proses fotosintesis, karbon dioksida diubah menjadi karbohidrat yang kemudian dapat digunakan untuk mensintesis materi organik lainnya. Karbohidrat yang dihasilkan oleh fotosintesis ialah gula berkarbon tiga yang dinamai gliseraldehida 3-fosfat. Senyawa ini merupakan bahan dasar senyawa-senyawa lain yang digunakan langsung oleh organisme autotrof, misalnya glukosa, selulosa, dan pati.
3. Peran sebagai bahan bakar dan nutrisi
Karbohidrat menyediakan kebutuhan dasar yang diperlukan tubuh makhluk hidup. Monosakarida, khususnya glukosa, merupakan nutrien utama sel. Misalnya, pada vertebrata, glukosa mengalir dalam aliran darah sehingga tersedia bagi seluruh sel tubuh. Sel-sel tubuh tersebut menyerap glukosa dan mengambil tenaga yang tersimpan di dalam molekul tersebut pada proses respirasi selular untuk menjalankan sel-sel tubuh. Selain itu, kerangka karbon monosakarida juga berfungsi sebagai bahan baku untuk sintesis jenis molekul organik kecil lainnya, termasuk asam amino dan asam lemak.
Sebagai nutrisi untuk manusia, 1 gram karbohidrat memiliki nilai energi 4 Kalori. Dalam menu makanan orang Asia Tenggara termasuk Indonesia, umumnya kandungan karbohidrat cukup tinggi, yaitu antara 70–80%. Bahan makanan sumber karbohidrat ini misalnya padi-padian atau serealia (gandum dan beras), umbi-umbian (kentangsingkongubi jalar), dan gula.
Namun demikian, daya cerna tubuh manusia terhadap karbohidrat bermacam-macam bergantung pada sumbernya, yaitu bervariasi antara 90%–98%. Serat menurunkan daya cerna karbohidrat menjadi 85%.Manusia tidak dapat mencerna selulosa sehingga serat selulosa yang dikonsumsi manusia hanya lewat melalui saluran pencernaan dan keluar bersama feses. Serat-serat selulosa mengikis dinding saluran pencernaan dan merangsangnya mengeluarkan lendir yang membantu makanan melewati saluran pencernaan dengan lancar sehingga selulosa disebut sebagai bagian penting dalam menu makanan yang sehat. Contoh makanan yang sangat kaya akan serat selulosa ialah buah-buahan segar, sayur-sayuran, dan biji-bijian.
Selain sebagai sumber energi, karbohidrat juga berfungsi untuk menjaga keseimbangan asam basa di dalam tubuh, berperan penting dalam proses metabolisme dalam tubuh, dan pembentuk struktur sel dengan mengikat protein dan lemak.

4. Peran sebagai cadangan energi

Beberapa jenis polisakarida berfungsi sebagai materi simpanan atau cadangan, yang nantinya akan dihidrolisis untuk menyediakan gula bagi sel ketika diperlukan. Pati merupakan suatu polisakarida simpanan pada tumbuhan. Tumbuhan menumpuk pati sebagai granul atau butiran di dalam organel plastid, termasuk kloroplas. Dengan mensintesis pati, tumbuhan dapat menimbun kelebihan glukosa. Glukosa merupakan bahan bakar sel yang utama, sehingga pati merupakan energi cadangan.
Sementara itu, hewan menyimpan polisakarida yang disebut glikogen. Manusia dan vertebrata lainnya menyimpan glikogen terutama dalam sel hati dan otot. Penguraian glikogen pada sel-sel ini akan melepaskan glukosa ketika kebutuhan gula meningkat. Namun demikian, glikogen tidak dapat diandalkan sebagai sumber energi hewan untuk jangka waktu lama. Glikogen simpanan akan terkuras habis hanya dalam waktu sehari kecuali kalau dipulihkan kembali dengan mengonsumsi makanan.

5. Peran sebagai materi pembangun

Organisme membangun materi-materi kuat dari polisakarida struktural. Misalnya, selulosa ialah komponen utama dinding sel tumbuhan. Selulosa bersifat seperti serabut, liat, tidak larut di dalam air, dan ditemukan terutama pada tangkai, batang, dahan, dan semua bagian berkayu dari jaringan tumbuhan.[10] Kayu terutama terbuat dari selulosa dan polisakarida lain, misalnya hemiselulosa dan pektin. Sementara itu, kapas terbuat hampir seluruhnya dari selulosa.
Polisakarida struktural penting lainnya ialah kitin, karbohidrat yang menyusun kerangka luar (eksoskeleton) arthropoda (seranggalaba-labacrustacea, dan hewan-hewan lain sejenis). Kitin murni mirip seperti kulit, tetapi akan mengeras ketika dilapisi kalsium karbonat. Kitin juga ditemukan pada dinding sel berbagai jenis fungi.
Sementara itu, dinding sel bakteri terbuat dari struktur gabungan karbohidrat polisakarida dengan peptida, disebut peptidoglikan. Dinding sel ini membentuk suatu kulit kaku dan berpori membungkus sel yang memberi perlindungan fisik bagi membran sel yang lunak dan sitoplasma di dalam sel.
Karbohidrat struktural lainnya yang juga merupakan molekul gabungan karbohidrat dengan molekul lain ialah proteoglikanglikoprotein, dan glikolipid. Proteoglikan maupun glikoprotein terdiri atas karbohidrat dan protein, namun proteoglikan terdiri terutama atas karbohidrat, sedangkan glikoprotein terdiri terutama atas protein. Proteoglikan ditemukan misalnya pada perekat antarsel pada jaringan, tulang rawan, dan cairan sinovial yang melicinkan sendi otot. Sementara itu, glikoprotein dan glikolipid (gabungan karbohidrat dan lipid) banyak ditemukan pada permukaan sel hewan. Karbohidrat pada glikoprotein umumnya berupa oligosakarida dan dapat berfungsi sebagai penanda sel. Misalnya, empat golongan darah manusia pada sistem ABO (A, B, AB, dan O) mencerminkan keragaman oligosakarida pada permukaan sel darah merah.
3. Pemberi Rasa Manis pada Makanan
Karbohidrat memberi rasa manis pada makanan, khususnya mono dan disakarida. Gula tidak mempunyai rasa manis yang sama. Fruktosa adalag gula yang paling manis. Bila tingkat kemanisan sakarosa diberi nilai 1, maka tingkat kemanisan fruktosa adalah 1,7; glukosa 0,7; maltosa 0,4; laktosa 0,2.
Gula invert merupakan hasil hidrolisis sukrosa yaitu campuran glukosa dan sukrosa.
4. Penghemat Protein
Bila karbohidrat makanan tidak mencukupi, maka protein akan digunakan untuk memenuhi kebutuhan energi, dengan mengalahkan fungsi utamanya sebagai zat pembangun. Sebaliknya, bila karbohidrat makanan mencukupi, protein terutama akan digunakan sebagai zat pembangun.
5. Pengatur Metabolisme Lemak
Karbohidrat mencegah terjadinya oksidasi lemak yang tidak sempurna, sehingga menghasilkan bahan-bahan keton berupa asam asetoasetat, aseton, dan asam beta-hidroksi-butirat. Bahan-bahan ini dibentuk menyebabkan ketidakseimbangan natrium dan dehidrasi. pH cairan menurun. Keadaan ini menimbulkan ketosis atau asidosis yang dapat merugikan tubuh.
6. Membantu Pengeluaran Feses
Karbohidrat membantu pengeluaran feses dengan cara emngatur peristaltik usus dan memberi bentuk pada feses. Selulosa dalam serat makanan mengatur peristaltik usus.
Serat makanan mencegah kegemukan, konstipasi, hemoroid, penyakit-penyakit divertikulosis, kanker usus besar, penyakiut diabetes mellitus, dan jantung koroner yang berkaitan dengan kadar kolesterol darah tinggi.
Laktosa dalam susu membantu absorpsi kalsium. Laktosa lebih lama tinggal dalam saluran cerna, sehingga menyebabkan pertumbuhan bakteri yang menguntungkan.
7. Sebagai Penyusun Asam Nukleat
Salah satu penyusun utama dari asam nukleat adalah karbohidrat



DAFTAR PUSTAKA
Anonim Karbohidrathttp://Id.Answers.Yahoo.Com/Question/Index? [24 juli 2009]
Anonim, 2008. Sifat-Sifat Fisik Dan Kimia Karbohidrat. http://food4healthy.wordpress.com/2008/08/13/sifat-fisik-dan-kimia-karbohidrat/. [24 Juli 2009]
Anonim. 2007. Uji Karbohidrat dan Protein http://www.forumsains.com/kimia/tanya-uji-karbohidrat-dan-protein/ [23 Juli 2009]
Anonim. Karbohidrat. http://id.wikipedia.org/wiki/Karbohidrat . [ 25 Juli 2009]
Anonim. 2008. Peran Karbohidrat Dalam Pemakanan Yang Baikhttp://darma.wordpress.com/2008/02/12/peranan-karbohidrat-dalam-pemakanan-yang-baik/s. [25 Juli 2009]
Anna Poejiadi. 1994. Dasar-Dasar BiokimiaUI-Press : Jakarta
Eltin Vika Mutiarin. ___. Biokimia Karbohidrathttp://www.Trimanunipa.com./html[23 Juli 2009]

0 komentar:

Post a Comment